
Bivariate Interpolation of Potential Functions 

By F. D. Burgoyne 

1. Introduction. To solve Poisson's equation over a region, use is frequently 
made of a numerical method which evaluates the required function at the points 
of a rectangular grid. Usually, the error associated with such a process is of the 
fourth or sixth order in the various differences. The problem may then remain of 
evaluating the function at nongrid points. This can be done by bivariate interpola- 
tion. It is, however, possible to modify the usual formulae [1], [2], [3] so as to use 
fewer interpolation points, since Poisson's equation holds at each grid point. If, 
in addition, Laplace's equation holds, these modified formulae become quite simple 
and convenient to use. Such formulae are obtained by using a bivariate version of 
the "Mehrstellenverfahren" due to Collatz and others [4], [5], [6], [7]. These authors 
seek an accurate representation for a differential operatnr hy means of- & dzifferenme. 
operator. They reduce the number of grid points needed for a given accuracy by 
assuming that the differential equation is approximately satisfied at each grid 
point. We use the same idea, but apply it to get better interpolation formulae. Of 
the very many such modified formulae we consider below two of the mid-point 
variety and one of the mid-panel variety, which have proved useful in practice. 
The error associated with these particular formulae is either of the fourth or of the 
sixth order, and is intended to match that of the method used to evaluate the func- 
tion at the grid points. Higher order formulae, and formulae of other varieties, 
which may be required for special purposes, can be developed quite simply in the 
same manner. We consider also one cubature formula which has proved useful 
when integrating over a region throughout which Poisson's equation holds. This 
formula is a generalization of one due to Bickley [8]. 

2. Mid-Point Formulae. The commonly used bivariate Stirling interpolation 
formula with error of the (n + 1)th order may be written 

n 

(1) fes= E Prfo0o 
r-O 

where 
8 8 

p2 = 
2 

O 
A28-2t5 2t+ 12,52s-2i+1 
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t=O t=1 

8 8 

P28+1 Ea 0282t+lq2 t&Xz2s-t+1Y25 t + E282 2 t+x2S-21t a 2 t+1 
t=o t=o 

and we have written 0o = 1, 1 = 0, 02 = 02/2!, 03 = 0(02 - 12)/3!, 

04 = 02(02 - 12)/4!, 05 = 0(02 - 12) (02 - 22)/5!, etc. It is usual to take 1O1 _ 2 X 

jqj < 2. The error of (1) is approximately Pn+Joo. If f has continuous (n + 1)th 
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order partial derivatives, an upper bound for the modulus of the error is 
max (hn+l, kn+l), where c8 = maxe,0 Ej=o Ios-ttI, M. is an upper 

bound for the modulus of all the sth order partial derivatives of f in the region 
under consideration, and h, k are the x, y intervals. The formula involves the 
grid points numbered 0, 1, ***, n in Fig. 1. 

5 
4 3 4 

4 2 1 2 4 
5 3 1 0 1 3 5 

4 2 1 2 4 
4 3 4 

5 
FIGURE 1 

Thus the formula 

(2) fers = (Po + P1 + P2)foo 

is a second order approximation and involves the nine points numbered 0, 1 and 
2. On the other hand the formula 

(3) ferk = (PO + PI + P2 + P3)foo 

is a third order approximation and involves the 13 points numbered 0, 1, 2 and 3. 
If, however, at each grid point V2f = g-where g = 0 if Laplace's equation holds- 
(&x2/h2 + 5y2/k2)f = g + second order terms [2], [9]. Hence jix63foo = 

-(h2/k2),qx~5xj2foo + h2 u'&goo + fifth order terms, with an analogous expression for 
,uXb&3foo. So P3foo = P3*fOO + (h203)o/,x&x + k2o0403uy)goo + fifth order terms, where 
P3* = (021 - (k2/h2)00o3)&x2y5,y + (0102- (h2/k2)030o)jx~x&5Y2. Thus we may re- 
place (3) by 

(4) fee (Po + P1 + P2 + P3*)fOO + (h2034oi0sx~x + k20 O03.s,6y)goo. 

The principal error term of (4) is the same as that of (3), i.e. P4oo: if f has con- 
tinuous fourth order partial derivatives the modulus of each error term is bounded 
above by (3/32)M4 max (h4, k4). However, (4) only involves the nine points num- 
bered 0, 1 and 2. Thus (4) has the accuracy of (3) yet uses only the same number 
of points as (2). This may be verified in the following example in which f(x, y) is 
the harmonic function (x + (X2 + y2)1/2)1/2, foo = f(l, 1) and h = k = 1/10. We 
obtain the following approximations to f(41/40, 41/40). 

Formula Number of points Value obtained 
(2) 9 1.57306278 
(3) 13 1.57307657 
(4) 9 1.57307649 

The correct value is 1.57307625. 
Using the same technique we find that qx6X5foo - (h2/k2),.sx 5x3 5i2foo + h214xsx3go0o 

+ seventh order terms, and an analogous expression for AI,6gfoo. Hence we may 
replace 

(5) fee = (Po + P1 + P2 + P3 + P4 + P5)foo, 
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which involves all 25 points of Fig. 1, by 

(6) fey = (Po + P1 + P2 + P3 + P4 + P5*)foo + (h2054oux x3 + k2Oc58y6y3)goo, 

where 

P5= 041015X4Ayb + (0302 -(h2/k2)05O)Ax36Y2 

+ (021)3 - (k2/h2) 0o,5)65 21Y53 + 010441X5 x5v4, 

which does not involve the points numbered 5. The principal error term of (6) is 
the same as that of (5), i.e. PJoo: if f has continuous sixth order partial derivatives, 
the modulus of each error term is bounded above by (5/256)M6 max (h6, k6). 

3. Mid-Panel Formulae. The Bessel formula corresponding to (1) is 

n 

(7) feo= Z Qrf(1/2)(1/2) 
r= 0 

where 

8 a 

Qs = E 0 62s-2t92s- pt + E 02s-2t,02st-1+X by 
t=O t=1 

= ~~j 0, ~~~t62s-2t+16y~2t + t+ 1 6-2 t62t+1 

and 0' = 1, 01' = 0 - 2, 026 = 6(6 - 1)/2!, 63' = 6(0 - 1)(0-1)/3!, 
04' = (O + 1)0(0 - 1)(0 - 2)/4!, 05 = (6 + 1)0(0 - 1)(6 - 1)(0 - 2)/5!, etc. 
Here it is usual to take I0- 'I < 2, |k- < '. The error of (7) is approxi- 
mately Qn+lf (1/2) (1/2). Under the same conditions as previously an upper bound for the 
modulus of the error is c'+,M'+, max (hn+', kn+l), where c,' = max, j 8 
and M8' is an upper bound for the modulus of all the sth order partial derivatives 
of f in the region now under consideration. If we put n = 2m or 2m + 1, accord- 
ing as n is even or odd, then (7) involves the grid points numbered 0, 1, * m 
in Fig. 2. 
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FIGURE 2 

Thus, if we take n = 5, we get the fifth order approximation 

(8) fee = (Qo + Q1 + Q2 + Q3 + Q4 + Qs)f(1/2)(1/2) 

which involves all 24 points of Fig. 2. If, however, V2f = g, we have 

((a2 -_ 1ax)/h2 ? (ay2 - 2 ay4)/1k2)f = g + fourth order terms 

[2], [9]. Hence 



592 F. D. BURGOYNE 

4 h 2 
2 2 ~~~1 ( 6 h 2 2 4 

xbz /Ayf(1/2)(1/2) = -y f(1/2)(1/2) + b ( y + 2 l 1)1 
k 1XbcX yy1f112(12)k 2/A 

+ h2.A XS2,yg(l/2)(l/2) + eighth order terms, 

and 
2 

b5z/Ayf(1/2)(1/2) = -- 5x3s082f(1/2) (1/2) + h25x3syg(1/2) (1/2) + seventh order terms 

with similar expressions for ,A.,.yay4f (l/2) (1/2) and jxbz5f(l/2) (1/2) respectively. Thus we 
find that 

(Q4 + Q5)f(1/2) (1/2) = (Q4* + Q5*)f(1/2) (1/2) 

+ (h20s51q5o'63Ijy + h2'4)0t01X X21A + h204')1'MXbx2by + k20l/q4) 5AMy52 

+ k2 o044' ,.oys002 + k20o'4)u6'MY63)g(1/2) (1/2) + sixth order terms, 

where 

Q4* = 034)1X6y3 b + (202'2' - 04( - 
0)0'4 )I AxO, 20602 + 01'038,by 62 

Q6* = (03'42'- 0540 - 2 01144)54 j/I 

+ (02'43- 04'c1'- 0 45.)/XI5 623 . 

So, if we replace (8) by 

fo = (Qo + Q1 + Q2 + Q3 + Q4* + Q5*)f(1/2)(1/2) 

(9) + (h205'0'stX6231A/ + h204t1o'01tujx2jsy + h204'410',1AX66 25 

+ k201'+4)4'5a5y2 + k210'44'Ms2/522 + k20o'45'.t,,3)g(l/2) (1/2) 

the eight exterior values f(1/2?5/2) (1/2?1/2), f(1/2?1/2)(1/2?5/2) are no longer involved. 
The error of (9) is of the sixth order and is approximately 

6lo6 + 12 044)o)0Ix(ASz/u + 0'01% )6by + (4')2' + 12h2 00'04 )4)xb yu6 

+ 03')3'6x by+ (02'04' + 12k2 /4'00')1xbx 2pyy4 + O1'q5'/xSV5 

+ (G0o 6' + 1y 0'84 )4)xiyii6)f(l/2)(1/2) - 

If f has continuous sixth order partial derivatives, an upper bound for the modulus 
of the error is 

(64 + 1 + k) M6max (h6, k6) 

4. Cubature Formulae. Cubature formulae for integrating over a region through- 
out which Poisson's equation holds may be developed in a similar way. As a simple 
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illustration, let us consider mid-point formulae to evaluate fl f1, feod~do, as- 
suming that V2f = g. By integrating (1), we get 

f food~do = i P2rdfd foo 
-1 -1 r=O -1 -1 

with an error of the (2m + 2)th order of approximately f1 fL 1 P2m+2 d~d4foo. 
If f has continuous (2m + 2)th order partial derivatives, an upper bound for the 
modulus of the error is dm+lM2rn+2 max (h2m+2, k2m+2), where 

8 1 1- + + d9= 0Iff 2,-2t4tdOdo~ 

Thus, if we take m = 2, we get 

(10 | | fsg~dt = 4 +3 a2+ 2 2 
2 _1 4 +1 26 2 _ a4) 

with a sixth order error of approximately 

1 (58 6 - 78482 - 78284 + 5y6')foo. 

If f has continuous sixth order partial derivatives, the above upper bound for the 
modulus of the error is (4/315)M6 max (h6, k6). This formula involves the points 
numbered 0, 1, 2 and 3 in Fig. 1. We note that the points numbered 3 are outside 
the region of integration. To get a formula which has a sixth order error and only 
involves the points numbered 0, 1, and 2, we may use the fact that V2f = g, which 
implies that 

= - ay22 +1 (6 + P az2,4y)foo + h2 g2qoo + eighth order terms, 

with a similar expression for Sy4foo, and thus replace (10) by 

f'f' fdOd4 = (4 + 8 a, + - ay + + 45k2 + 4 a,988 ay )foo 

- I (h2sx2 + k2SY2)goo 
45 

The resulting error is approximately 

1(6 k2\4 2 / h2\24 
3780136 - 7(2 + ax ay - 7K2 + &28y au + 3 S')foo 

Under the same conditions as previously, the above upper bound for the modulus 
of the error is 

( + _ + k)2)Memax (h6, k6) 

The special case of (11) in which h = k has been considered by Bickley [8]. 
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